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INTRODUCTION 

Conformal mapping provides an effective means of generating suitable grids 

for use In the numerical solution of many two-dimensional flow problems. 

There are numerous examples of Its use for problems Involving single-element 

airfoils. Including the well-known finite-difference transonic flow codes of 
12 3 

Garabedlan and Korn and Jwiieson . The present author has found con- 

formal mapping to be especially useful In computing compressible potential 

flow using an Integral-equation (or field-panel) approach similar to that used 

by Wu and Thompson , Luu and Coulmy , and others. In this approach, a 

body Is analyzed In an equivalent Invlscld, Incompressible flow with distrib- 

uted singularities In the external field. The distribution of the singulari- 

ties Is determined In an Iterative manner, using the fully nonlinear field 

equation, the computed flow field, and the appropriate solid-body boundary 

conditions. Application of a conformal mapping to this problem simply modif- 

ies the magnitudes of the singularity strengths and the boundary conditions, 

without changing the general form of either. The regular spacing in the 

transformed plane allows the application of very efficient numerical proced- 

ures which make effective use of the fast Fourier transform algorithm. For 

example, using the grid transformations shown in figure 1, accurate subsonic 

compressible flow solutions for single-element airfoil cases have been 

obtained in less than two seconds of CPU time on an IBM 370 computing system. 

Conformal mapping has also been used for problems involving two-element 

airfoils. For example, the finite-difference transonic flow code developed by 

Grossman and Volpe makes use of a mapping, developed by Ives , in which 

the region outside two airfoil elements is transformed to the annular region 

between two concentric circles. In that case, however, it was necessary to 

apply nonconformal shearing transformations to the resulting grids, in order 
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to obtain suitable point spacing distributions. This illustrates the unfor- 

tunate fact that conformal mapping methods do not allow the degree of control 

over grid point spacing offered by some other methods, such as the differen- 
g 

tlal equation methods of Thompson . 

Conformal mapping has not yet been used to generate grids for flow problems 

involving general multielement airfoils with more than two elements (at least, 

not to the author's knowledge). This development has been hindered by the 

absence of any suitable conformal mapping methods for general multielement 

airfoils. However, the recent development of such methods by the present 
9 10 

author and by Harrington  should result in the increased use of con- 

formal mapping for multielement airfoil Probleme. 1 t >•? 

This paper describes recently-developed,techniques applicable to cases 
A 

involving general multielement airfoils having any number of airfoil elements. 

Each technique can be considered as a purely geometric construction or, equlv- 

alently, as a network of streamlines and potential-lines of an auxiliary 

potential-flow solution. The nonunlqueness of such solutions ensures the 

existence of a wide variety of conformal grid typjs, each having different 

point-spacing characteristics. A chronicle is given of the search for the 

type of grid most suitable for solving the inviscid compressible flow equa- 

tions using a distrlbuted-source field-panel approach. Examples are shown for 

grids involving up to four airfoil elements. 

\ 

(a) 

(b) 

Pig. 1.   Typical conformal grid for a single-element airfoil. 
(a) Circle plane. 
(b) Physical plane. 
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CONFORMAL MAPPING OF MULTIELEMENT AIRFOILS 

A prerequisite for the development of confcrmal grid generation techniques 

for multielement airfoils Is the existence of a method for transforming the 

multiple airfoil elements to a system of bodies having much simpler geometry. 
9 

Such a method has been developed by the present author . This method makes 

use of a succession of comparatively simple single-body transformations to 

solve the more difficult multiple-body problem. In the first step, a succes- 

sion of Inverse Karman-Trefftz mappings is applied. Each of these mappings 

removes a single corner (or a pair of corners In some cases) from a single 

body, and also causes smaller perturbations to the shapes of the other bod- 

ies. At the end of this step, there are no corners and, in most cases, all 

bodies are quasi-circular in shape. The next step is an iterated sequence of 

mappings, each of which maps a single body to a perfect circle, and also 

causes small perturbations to the other bodies. At the end of each Iteration 

of this sequence, the final body is perfectly circular and the other bodies 

are more nearly circular than at the end of the previous Iteration. Itera- 

tions proceed until all bodies are sufficiently close to perfect circles and 

the derivative of the mapping function converges to within a sufficiently 

small tolerance. Because of the rapid decay with distance of the effects of 

(b) 

Fig. 2. Transformation of a four-element airfoil into four circles. 
(a) Physical geometry. 
(b) Geometry after four corner-removing mappings. 
(c) Geometry after four circle mappings. 
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these mappings, the entire procedure converges extremely quickly. Three to 

five iterations are usually sufficient to give four-digit accuracy. The 

entire procedure usually requires less than three CPU seconds on an IBM 370 

computer. This process is illustrated in figure 2, which shows a four-element 

airfoil, the geometry after the removal of all corners, and the geometry after 

only one iteration of the circle mappings. An extension of this procedure to 

allow airfoils with open trailing edges to be included is described in ref- 

erence 11. 

GRIDS USING A STRING MAPPING 

One straightforward grid generation procedure for multielement airfoils 

involves stringing the airfoil elements together into a single effective body, 
g 

in a manner reminiscent of Thompson's treatment of multielement airfoils . 

In this approach, it is not necessary to use a conformal mapping method for 

multielement airfoils, although the geometric problems are simplified somewhat 

if the bodies have been previously transformed to circles. This grid genera- 

tion procedure requires the following stepsi 1) String the bodies together 

into a single body and order the points in a continuous array around the per- 

imeter of the effective body. 2) Apply the Karman-Trefftz transformation suc- 

cessively to remove the resulting corners in the effective body. 3) Transform 

the resulting body into a perfect circle. 4) Set up the grid in the circle 

plane. 5) Perform the transformations in reverse order, bringing the grid 

points back to the multiple-circle plane and finally back to the physical 

plane. The steps in this process are illustrated in figure 3 for a three- 

element airfoil case. For step 3, a very robust circle mapping method is nec- 

essary, since the shapes to be transformed are too complicated for more lim- 

ited methods. A comparison of two alternative circle mapping methods is given 

in reference 12. 

Grids produced by this technique for two- and three-element airfoil cases 

are illustrated in figure 4. These grids are very similar to single-element 

grids, such as the one illustrated in figure 1 and the flow calculation tech- 

nique of reference 3 can be directly applied. Point density in these grids is 

suitably high near the leading edge of the forward element and the trailing 

edge of the aft element, but there are undesirable sparse areas between the 

airfoil elements. Although these sparse areas may not cause serious errors in 

some calculations, they clearly limit the general applicability of this grid 

generation technique. 
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(a) 

\ 

(b) 

(d) 

Fig. 3. "String mapping" for a three-element airfoil. 
(a) Physical geometry, 
(b) Geometry in multiple-circle plane. 
(c) Single body produced by stringing circles together. 
(d) Geometry after corner-removing mappings. 
(e) Unit circle. 

(b) 

Fig. 4. Grids generated using the string mapping. 
(a) Two-element airfoil. 
(b) Three-element airfoil. 
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GRIDS USING STREAMLINE/POTENTIAL-LINE NETWORKS 

The grids described above were derived using purely geometric conformal 

constructions. Other types of grids can be derived front networks of stream- 

lines and potential-lines from auxiliary potential-flow solutions. These 

grids are conformal as a result of the fact that the complex potential 

($»()) + i\j), where $ and i|) are the scalar potential and stream function) and 

the complex velocity are analytic functions of each other. In fact, any 

conformal grid can be considered to be a potential/stream-function network 

(4»-^ grid for short) for some potential flow. In this context, fie grids 

described in the above section can be derived from a flow with a point vortex 

at the center of the circle in the transformed plane. The nonuniqueness of 

the potential-flow problem for given geometry ensures that a wide variety of 

types of conformal grid can be constructed. 

The development of a b-^  grid generation capability for multielement 

airfoils (using the present author's conformal mapping procedures) requires a 

method for computing the flow around the multiple circles, with constant 

stream function on each circle. Such a method is described in reference 9 and 

briefly below. 

Any incompressible potential flow solution can be represented by a linear 

combination of simpler fundamental solutions. In the present method, there 

are two noncirculatory fundamental solutions and a number of circulatory solu- 

tions equal to the number of circles. Each noncirculatory solution has unit 

freectream and zero circulation about each circle. The two solutions have 

different angles of attack of the freestream flow. Each circulatory solution 

has zero freestream, unit circulation about one circle, and zero circulation 

about all other circles. The two noncirculatory solutions and one of the 

circulatory solutions for a three-circle case are illustrated in figure 5. 

The calculation of each noncirculatory flow solution involves finding an 

infinite sequence of reflected point doublet singularities within the cir- 

cles. Bach circulatory flow solution involves finding a similar infinite 

sequence of point vortex singularities. The result of each flow solution is a 

series expansion for the complex velocity as a function of complex coordin- 

ate. This is easily converted to a series for the complex potential having 

the following form 

NBDS 

♦•aj""»''2*'"1 '" 
NB 
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(a) 

(b) 

(c) oo 
Fig. 5. Nonunlquenesa of potential-flow solutions. 

(a) Noncirculatoty flow with freestream at a ■ 0°. 
(b) Noncirculatory flow with freestream at a » 90°. 
(c) Circulatory flow with stagnant freestream. 

where t,  is the complex coordinate of the point at which the flow is to be 

computedi r  is the complex coordinate of the center of the circle having 
No 

index NB, NBDS is the total number of circles, and the series coefficients 

(a ) are generally complex. 

The calculation procedure for each point in a b-ty  grid consists of 

solving equation (1) for the complex coordinate corresponding to the specified 

value of the complex potential in the multiple-circle plane, followed by a 

transformation to determine the complex coordinate in the physical plane. The 

solution of equation (1) is accomplished by a Newton iteration procedure for 

nonlinear complex equations. Having solved equation (1) on the boundaries of 

a region of the flow, the solution in the interior can often be obtained more 

efficiently using a fast Laplace solver. 

(fr-ty grids for streaming flows 

The most common flow solutions used for producing <t)-\|) grids are prob- 

ably the standard streaming flows, with uniform freestream and smooth flow off 

the trailing edge of each airfoil element. These can be obtained by combining 

all the fundamental flows described in the previous section. The combination 

constants for the noncirculatory fundamental flows depend only on the flow 
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angle of attack. The combination constants for the circulatory solutions are 

found by imposing the Kutta condition at the trailing edge of each airfoil 

element. In the multiple-circle plane, this requires specifying zero tangen- 

tial velocity component at the images of the trailing-edge points and solving 

the resulting set of linear equations. 

The point spacing in the physical plane of a §-ty  grid is inversely pro- 

portional to the local flow speed. Consequently, a grid around a body which 

causes only a small perturbation to a uniform flow should have nearly uniform 

spacing. This is illustrated in figure 6(a), which shows a grid for a single- 

element airfoil at a small angle of attack. Flow solutions with extensive low- 

speed regions have extensive sparse areas. This is Illustrated in figure 

6(b), which shows a grid around two circles, with large sparse areas near the 

leading- and trailing-edge stagnation points. 

These grids are divided into a number of segments, separated by the stagna- 

tion streamlines. Within each segment, increments of stream function and 

potential are constant, resulting in a rectangular grid in the <j)-il) plane. 

A logarithmic mapping transforms the rectangular region into an annular one 

similar to figure 1(a). The efficient flow calculation techniques of refer- 

ence 3 can then be used to find the influence of each region at points in all 

the regions. 

For the present application, these grids have several drawbacks. First, 

the sparse areas near the leading edges would give inadequate definition of 

the rapidly-varying field-source density. Second, the uniformly-spaced areas 

far from the bodies would reduce the solution efficiency by adding unnecessary 

points. Third, the flew calculation procedure of reference 3 is most effic- 

ient if 0-type grids can be used. 

til (b) 

iiiiiiüiiiiHHi i"""!!!' '"Kffli!!!!!!!!1!"" " m 
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Fig. 6. Grids derived from potential-flow solutions for streaming flows. 
(a) Single-element airfoil. 
(b) Two circles. 
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|H[) grids for circulatory fundamental flows 

0-type grids can be obtained from I(I->|) networks If flow solutions having 

circulation but no freestream are used. The point vortex solution for single- 

element cases, mentioned earlier, is an example of such an application. The 

simplest multielement flow solutions having circulation but no freestream are 

the circulatory fundamental flow solutions, having unit circulation about one 

body and zero circulation about all others. Like the (M1 grids for 

streaming flows, these grids are divided into a number of segments by the 

stagnation streamlines. In each segment, the increments in stream function 

and potential are constant and the flow calculation procedure is identical to 

that for a fy-'ii grid for a streaming flow. 

Examples of circulatory (j^ grids are shown in figure 7 for two- and 

three-element airfoil cases. In general, the point distribution around the 

circulatory body is very desirable, with high point density near the leading 

and trailing edges and lower point density near mid-chord. The noncirculatory 

bodies have high point density near the leading and trailing edges, but they 

have far too low poir.t density near the stagnation points on the upper and 

lower surfaces. Grids of this type would probably only be suitable for cases 

in which the expected flow solution is rapidly varying on just one of the air- 

foil elements. 

JM[) grids for more general flows 

The most undesirable features of the fy-i) grids discussed above are the 

sparse areas associated with stagnation points on the bodies. In many cases, 

,.)      ^mmmmmmm^ W 

Fig. 7. Grids derived from potential-flow solution for circulatory funda- 
mental flows. 

(a) Two-element airfoil. 
(b) Three-element airfoil. 
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however, it Is possible to eliminate stagnation points entirely or move them 

so far from the bodies as to be inconsequential. One strategy for accomplish- 

ing this is to combine circulatory fundamental flows, alternate the sign of 

the circulation on adjacent bodies, and adjust the magnitudes to make the 

total circulation equal zero. Examples of portions of grids of this type are 

illustrated in figure 8. The most obvious feature of these jrids is their 

extremely high point density in the areas between the bodies which, for a 

given total number of points causes sparse areas elsewhere. Another feature 

is that each grid is divided into a number of segments, within each of which 

the streamlines circulate around a single body. The dividing streamlines 

between the segmsnts extend to infinity in both directions. Both of these 

features are undesirable for the present flow computation procedure, prompting 

the s£»rch for still further types of conformal grids. 

On- vay of eliminating the infinite extent of the grid and also changing 

the point distribution is to allow the total circulation to be nonzero. At 

some distance from the bodies, the streamlines will then circulate around all 

the bodies and the grid can be truncated at any one of these streamlines. 

Spacing problems still remain, however, and can even become more serious as 

new stagnation points arise in the flow. 

More control of the spacing can be obtained by introducing fictitious 

bodies or singularities into the flow (out of the range covered by the grid). 

If a new body surrounds all the other bodies and contains the entire flow in 

its interior, control is also achieved over the extent of the grid. This has 

(b) 

Fig.  8.    Grids derived from potential-flow solutions for more general flows 
(zero total circulation). 
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been irapleinented by adding a larger circle around the original bodies in the 

multiple-circle plane. Calculation procedures for the auxiliary potential 

flow are only slightly modified by this addition, requiring the series to:  the 

complex potential to include positive as well as negative powers of the com- 

plex coordinate. An example of a portion of a grid generated in this manner 

is shown in figure 9. This is a big improvement over the previous grids; the 

point spacing is more appropriate and the grid extent is now finite. 

Flow calculations using any of the grids discussed in this section 

encounter difficulties not found when any of the previous grids are used. The 

efficient flow calculation procedures of reference 3 can still be used to find 

the influence of the singularities within any given grid segment at points 

within that same segment, but they can no longer be used directly to find the 

Influence at points outside the given segment. This is because the segment 

boundaries now represent folds in a Riemann surface, rather than just discon- 

tinuities in point spacing. Another way of expressing this is to note that 

the stream function is not a monotonic function of distance along any line 

crossing the dividing streamlines and, as a result, two or more points in dif- 

ferent segments of a grid can have Identical values of the complex potential. 

Pig. 9. Grid derived from a potential-flow solution for a more general flow 
(nonzero circulation and fictitious body). 
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These grids can still be very useful, especially in a field-panel method, but 

means of communication between the segments must be developed. These tech- 

niques could be very similar to the flow segmentation techniques described by 

Hu , et al. Given the influence of a segment on its boundaries, the influ- 

ence at exterior points can be computed using either boundary singularities or 

a fast Laplace solver (perhaps with the aid of additional transformations). 

The details of these segment communication techniques have yet to be worked 

out. 

SEGMENTED GRIDS WITH SPECIFIED BOUNDARIES 

A greater degree of grid control can be achieved by directly specifying the 

shapes of the region boundaries, rather than using whatever shapes the divid- 

ing streamlines of a flow solution may form. In order to forre the boundaries 

to be streamlines of the flow, it Is necessary o distribute vortex singular- 

ities on the boundaries. The distribution of these singularities could be 

computed using a boundary-integral-equation technique similar to the panel 
14 

methods for aerodynamic analysis developed by Hess  and others. A more 

efficient computational approach makes further use of conformal mapping. In 

this approach, each segment of the grid is dealt with independently of the 

other segments. The region between a single element of the multielement air- 

foil system and the boundary surrounding it is transformed to the annular 

region between two concentric circles. A polar grid in each annular segment 

is constructed and transformed back to the physical plane. The resulting grid 

is equivalent to the ty-ty  grid which would be'computed using the vortex 

singularity approach. 

The process of transforruing a given region to an annulus is very similar to 

the method for transforming a multielement airfoil to a system of multiple 

circles. The first step is to apply a sequence of inverse Karman-Trefftz map- 

pings, each of which removes a single corner from one of the boundaries. (If 

the boundary specification is performed in the multiple-circle pl(.'>e, only the 

outer boundary will have any corners.) The next step is to apply an iterated 

sequence of mappings, each of which maps either the inner or the outer bound- 

ary to a perfect circle. In order to avoid the necessity of applying an 

interior mapping to the outer boundary and an exterior mapping to the inner 

boundary, an inversion mapping is performed after each circle mapping. At the 

end of a small number of iterations (typically three or four), both inner and 

outer boundaries are sufficiently close to circular and the derivative of the 

mapping function converges to within a small tolerance. Since these circles 
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Pig. 10. Transformation to an annular region. 
(a) Original geometry. 
(b) Geometry after four corner-removing mappings. 
(c) Geometry after C.J c'-ole mappings and two Inversions. 

Pig. 11. Boundary construction for a segmented grid. 

may not be concentric, It Is necessary to perform a tlnal linear fractional 

mapping. The steps of this transformation procedure are Illustrated In figure 

10 for one of the segments of the three-circle case shown In figure 11. An 

alternative approach to the annular mapping problem has been described by 
7 

Ives . Since his method is noniterative (except for the single-body map- 

pings) it is perhaps more efficient. However, the present method can use 

simpler functions and the overall procedure is only slightly more expensive 

than computing two independent single-body mappings. 
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Grids produced by this technique for two- and three-element cases are shown 

in figure 12. In each case, a simple construction of straight lines and/or 

circular arcs in the multiple-circle plane was used to define the region 

boundaries. Point spacing around each airfoil element is similar to the spac- 

ing around the single-element airfoil of figure 1, with high point density at 

leading and trailing edges and no glaring sparse areas on the airfoil sur- 

faces. Possible drawbacks of these grids Include the presence of sparse areas 

near the corners of the outer boundaries and the necessity to locate bound- 

aries too near the airfoil surfaces.  (Moving the boundaries too far away 

produces sparse spacing on the airfoil surfaces.) 

Fig. 12. Grids generated using the annular mapping. 
(a) Two-element airfoil. 
(b) Three-element airfoil. 

HYBRID GRIDS 

Improved grids can be obtained by combining the method described above with 

the string mapping illustrated earlier (figures 3 and 4). Instead of specify- 

ing the region boundaries arbitrarily, use can be made of curves generated 

using the string mapping. Region boundaries can be constructed using any of 

the curves surrounding all airfoil elements, together with sets of curves 

which run between the airfoil elements. In this way, two of the four corners 

(and their corresponding sparse areas) on the outer boundaries of the grid 

segments associated with thn forward and aft airfoil elements are eliminated. 

It la also possible to extend the grid as far from the airfoil system as 

desired, by using a portion of the string grid directly in this region. 

Grids produced by this technique for two-, three- and four-element cases 

are illustrated in figure 13. These grids retain the desirable features of 

the grids of figure 12, while eliminating most of their drawbacks. 

■' 



599 

(a) (h) 

(c) 

Fig. 13. Hybrid grids generated using both annular and string mappings. 
(a) Two-element airfoil. 
(b) Three-element airfoil. 
(c) Four-element airfoil. 

CONCLUSIONS 

A chronicle has been given of the search for the type of conformal grid 

most suitable for use In computing the inviscid compressible flow around 

multielement airfoils using a distributed-source field-panel approach. 

Although many of the grids were deemed not suitable for this application, they 

were included In order to illustrate the great diversity of types of conformal 

grid which can be constructed. The final grids, for the most part, have 
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desirable point distributions around each airfoil element, of a form to which 

the efficient flow analysis techniques developed earlier can be readily 

applied. They are possibly close to the best which can be derived without 

sacrificing the conformality properties. 
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